
Towards Designing a Tool For Understanding Proofs in
Ontologies through Combined Node-Link Diagrams

Tamara Flemisch1, Ricardo Langner1, Christian Alrabbaa2, and
Raimund Dachselt1

1 Interactive Media Lab Dresden, Technische Universität Dresden
2 Theoretical Computer Science, Technische Universität Dresden

Nöthnitzer Str. 46, 01187 Dresden, Germany
firstname.lastname@tu-dresden.de

Abstract. As the creation of large ontologies is a difficult and error-prone pro-
cess, we think it is particularly relevant to develop new visual and interactive tools
that support exploring ontologies as well as finding and resolving defects, such
as undesired logical entailments. Exhibiting formal proofs for the undesired en-
tailments can help in understanding how a defect happens, and linking the steps
in the proof to the ontology can help in determining how the defect can be fixed.
We present an interface that visualizes proofs and the corresponding ontology in
form of side-by-side node-link diagrams. Building on linked brushing, users ben-
efit from a strong interplay between these views, which allows for discovering
and understanding defects. Besides traditional desktop workplaces, our interac-
tion design also considers the use of touch input enabled by interactive displays.
As part of an iterative design process, we developed an initial web-based pro-
totype implementation and gathered feedback from an interview with domain
experts. With this ongoing research and development, we aim to further inves-
tigate the potential and general utility of interactive visualizations for ontology
engineering.3

1 Introduction and Related Work

Creating and maintaining large ontologies is an error-prone process. The large size and
the intricate relation of the knowledge represented in ontologies makes the task of on-
tology debugging difficult [12]. Examples for errors that appear in ontologies are unsat-
isfiable concepts or undesired entailments, which we refer to as defects in the following.
However, tools exist to aid users in finding incorrect or undesired entailments. Explor-
ing formal proofs for the undesired entailments can help in understanding the origin of
a defect. Furthermore, connecting the proof of the undesired statement to the ontology
can aid in determining how a defect can be fixed. This can be achieved by computing
diagnoses for the defect and showing their impact on the whole ontology. We think, it
is highly relevant to support this process of exploring ontologies as well as finding and
resolving defects by developing new visual and interactive tools.

3 Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).



Visualization and interactive methods have been applied to a multitude of different
application domains. Especially linking and combining multiple visualizations, e.g.,
multiple coordinated views (MCVs), is a common approach to solve complex prob-
lems [27]. It has been used to address challenges inherent to visualizations, such as
filtering and querying [5], collaborative exploration through meta-visualizations [32],
and visualizing change in dynamic networks [18]. Some of these techniques were then
applied to domain-specific problems, such as exploring multivariate data [17], observ-
ing the sharing of pictures in social networks [18], and visualizing genealogy [26] and
biology data [21]. Multiple visualizations have also been investigated in non-traditional
setups, such as large, interactive displays [17, 32] and mobile devices [16, 28]. Espe-
cially in the domain of visualizing ontologies, plenty of tools exist and were collected
and compared in a comprehensive survey by Dudás et al. [6]. An example is Matent-
zoglu et al.’s [23] Inference Inspector which helps in understanding ontologies by vi-
sualizing entailment set changes. Among the variety of different techniques, such as
node-link visualizations, radial layouts, and treemaps, are specific examples, such as
indented lists used in Protégé [15], Jambalaya [31], OWLViz4, and KC-Viz [24]. They
use a vast selection of interaction techniques, such as filtering, keeping a history, high-
lighting, and edge bundling. However, most of the existing tools have issues [6]:

– They often have a UI, visualization and interaction design that leaves room for
improvement regarding current technologies

– They only focus on class hierarchies of ontologies and are not tailored towards
understanding proofs

– They focus on a text based representation instead of a visualization of the content

Interaction plays a huge role when it comes to exploring and understanding data [19,
8] in general. More specifically, previous work has looked at interaction techniques
for exploring tree visualizations [20] and node-link diagrams [5, 3, 22]. Furthermore,
natural interaction, e.g., through pen and touch input, has also been successfully applied
to network visualizations to aid with exploring [7, 18, 14] as well as editing [9].

We present an interface that visualizes proofs and the corresponding ontology in
form of side-by-side node-link diagrams for ontology debugging of unwanted conse-
quences. Whereas the view of the ontology, which displays its modular structure, has
its origin at the top of the view, the proof tree shows the root node, i.e., the final con-
clusion of the proof, at the bottom. We build on common interaction techniques, such
as linked brushing [2, 27] and overview+detail [4, 25], to create a strong interplay be-
tween these components to support the users in discovering and understanding defects.
In addition to traditional desktop workplaces, we also consider the use of touch input
enabled by interactive displays and propose adaptations to leverage the benefits of nat-
ural interaction.

In this work, we describe our tool based on the process we went through. First,
we describe the use cases on which we based our design. After elaborating more on
the detailed visualization and interaction concepts, we explain the technical details of
the implementation. Finally, we discuss adaptations based on what we learned from

4 https://github.com/protegeproject/owlviz

https://github.com/protegeproject/owlviz


our prototype and the feedback we gathered from the domain experts for our initial
prototype and.

2 Application Interface

Our application is a prototypical web application for ontology debugging of unwanted
consequences. It consists of two main components: the Proof Component which offers
an interactive visualization for explaining defects by using proofs and the Ontology
Component which visualizes the ontology in its modular structure and shows diagnoses
of defects and their impact on the ontology.

In this section, we start by describing the use cases we derived from several ana-
lytical interviews with expert users. We then explain how these use cases inspired our
visualization and interaction design for traditional desktop setups.

2.1 Use Cases

We conducted several analysis sessions experts for Description Logic ontologies [1].
During the first sessions, we made use of paper-based and whiteboard sketches to un-
derstand the domain, the data, and the problem with existing tools. In later sessions,
we also incorporated their data, i.e., a graph representing the ontology in its modular
structure and formal proofs as trees, into exiting graph visualization tools. Our goal was
to discover issues with current visualizations, to identify challenges for visualizing both
types of data at the same time, and to explore possible scenarios. For all sessions inde-
pendent of the technologies used, we interviewed the domain experts and derived the
following use cases for visualizing proofs along with their respective ontologies with
regard to ontology debugging.

Comparing and Contrasting Ontologies are often subject to change and a collabora-
tive effort of a whole community. This results in bugs potentially being introduced by
accident from one version to the next. Therefore, it can be beneficial to compare the
proofs for undesired entailments in addition to the ontology among different versions.
This visual comparison can help to spot differences, identify changes, and potentially
even help to understand the origin of these changes [10].

Understanding and Exploring Since ontologies are large constructs that are often hard
to grasp for novice users, one use case is the explaining of ontologies. We believe that
exploring a proof, i.e., a designated part of an ontology, can help novices in understand-
ing the inner workings and the structure of ontologies. Furthermore, breaking down a
graph into chunks that are easier to understand at once, might help in exploring the
overall network.

Showing and Explaining Analogous to the previous use case, presenting and exploring
a proof might also help when explaining an ontology’s structure to other people. The
proof’s layered and stepwise structure helps in breaking down a larger problem into
little chunks. It can further aid in explaining how logical reasoning works by example
which can be leveraged for educational purposes.



Repairing and Fixing The most important use case for our application scenario is re-
pairing and fixing parts of an ontology. After having found the undesired entailment,
the user aims to fix it by iteratively navigating a proof tree and identifying the origin of
the bug. Additionally, the connection between ontology and proof might help the user
to decide how to fix a particular bug by computing diagnoses.

After carefully evaluating the possible use cases for visualizing proofs and their cor-
responding ontology, we decided to mostly focus on the primary use case of Repairing
and Fixing in addition to a secondary use case of Understanding and Exploring. How-
ever, our proposed interface does not exclusively support one use case, it still supports
other use cases in parts. In summary, our main aim was to assist users in achieving the
following tasks:

– Understanding entailments through proof exploration
– Understanding the interaction of axioms in the ontology
– In case of unwanted entailments, understand how to fix the ontology and the effect

of axioms removal on the modular structure of the ontology

2.2 Visualization, Interaction Design, and Features

Before designing our application, we decided on some requirements that shaped our
design process:

– The application is predominantly used in a traditional desktop environment.
– It should be possible to use the application across distributed devices, i.e., having

the two visualizations on different devices.
– Our main goal is to seamlessly integrate both components into one interactive tool.

To make it easier for novices to understand, we are using a commonly used example
ontology, the Pizza Ontology in a modified way5 in our examples and figures. The
modification introduces the defect SpicyIceCream v Pizza.

The Proof Component The proof component consists mostly of the proof tree of a
chosen entailment with the root node being the proven entailment, i.e., the conclusion
(see Figure 1). In our example, the proof shows the unsatisfiability of SpicyIceCream.
The leaf nodes represent a so called justification for this entailment, i.e., statements
that are part of the ontology and justify the entailment as being true. The levels in-
between show the logical reasoning from the justifications to the entailment. By ex-
ploring the proof, the user may find other defects that lie within the proof, e.g., that
SpicyIceCream v Pizza. The Proof Component is the center of our application and
serves as a starting point for exploring the ontology and finding the origin of a de-
fect. For showing the proofs, we use a node link diagram that puts the leaf nodes on top
and the root node at the bottom of the view. This node-link encoding emphasizes the
connection among nodes, their depth within the tree, and its topological structure [30],
i.e., the various paths that lead to the final conclusion. We decided to create an axis-
oriented tree layout since it is very common and most users will be familiar with it [29].

5 Available at https://lat.inf.tu-dresden.de/Evonne/PizzaOntology/

https://lat.inf.tu-dresden.de/Evonne/PizzaOntology/


Fig. 1. Screenshot of our tool showing Proof Component

Because a proof can be reasonably large and hard to understand at a glance, we provide
interactive techniques for navigating the tree and making a large proof easier to under-
stand. The button at the top (cf. Figure 1) loads a chosen proof from a GraphML file
and displays it within the component. Clicking on one of the nodes, i.e., axioms of the
proof, reveals iconic buttons that allows the user to access navigation and communica-
tion functionalities (cf. Figure 2).

The navigation buttons and the switch for the Stepwise Mode allow for a stepwise
exploration of the proof in both directions, top-down and bottom-up. With top-down
and bottom-up, we consider the tree’s structure and not the position of the nodes, i.e.,
bottom is the leaf node level whereas top is the root node.

Generate and

Show diagnoses

Show justification

of the corresp. proof

Communication buttons

Hide all prev. inferences

Show all prev. inferences

Show the next inference

Navigation buttons

Fig. 2. Buttons associated with axioms in proofs

In the top-down approach, the exploration starts with showing only the final conclu-
sion. Previous inferences can be revealed step-by-step. This allows the user to be fully
in control of the exploration and focus on the paths they are interested in. This way,
the next node, i.e., inference, is only revealed once the user decides that the visible part
has been understood. In the bottom-up approach, i.e., starting from the leaf nodes, the
justification, users can collapse certain parts of the proof as understood which thereby



decreases the size of the proof and allows the user to increase the focus by omitting
information. By providing both approaches, we allow the users to traverse the proof
according to their preferences.

In case of very hard to comprehend parts of the proof, the user can take a sub-proof
and isolate it from the remaining tree by using the ”delink” button on the edge to the
following node (cf. Figure 3). This provides a detail view of all inferences that lead to
the chosen link. By clicking on the red node on the bottom, the user is taken back to the
original view of the proof.

Fig. 3. Clicking on the delink icon next to the link in the left image isolates the sub-proof starting
from this connection, which can be seen in the right image.

Besides their large size, proofs can also be hard to understand because of the rules
that are applied in each step. The rule might be puzzling because the user might not be
familiar with it or because the axiom itself is too long to easily spot the application of
the rule. To aid the user in comprehending these rules and inference steps, we designed
a tooltip that can be invoked by clicking on a particular rule (cf. Figure 4). The tooltip
provides the following contents: The abstract rule using substitute variables for the
concepts, the current instance of the rule below the abstract rule, and a color encoding
that explains how the abstract rule was applied.

The Ontology Component The ontology component computes the diagnoses for the
defects and visualizes their impact through the ontology’s modular structure. Its role
is to put the proof in context and give an overview of the whole ontology. As shown
in Figure 5, the component consists of two parts, the modular structure as a node-link
diagram and the part that shows possible diagnoses for a defect. Regarding the layout of
the node-link diagram, users can either use a pre-computed force-directed layout [13],
arrange the nodes by dragging to create a custom layout which can then be saved, or load
a layout. We provide two types of labels for the nodes. The default label lists all axioms
that are contained in the node whereas the other option labels the node with the signature
of axioms in this node, such as Toppings, while respecting the dependency between
the nodes. A collapsed side menu shows the computed diagnoses for a certain axiom.



Fig. 4. Explanation of an instance of the Intersection Composition rule.

Fig. 5. Screenshot of our tool showing the Ontology Component

These diagnoses are grouped into collapsed panels based on their size to add structure to
the otherwise convoluted list. Hovering over a diagnosis highlights the corresponding
axioms in the node-link diagram by changing their color. Using linked brushing [2]
allows us to explore the relations between the different types of data [27]. It also changes
the color of all nodes that contain these axioms and their predecessors which shows the
impact of the diagnosis on the ontology.

Interplay Between the Components We provide two techniques that connect the two
main components of our tool, which are both triggered in the Proof Component. How-
ever, the effects are shown in the Ontology Component. The first technique is high-
lighting diagnoses. A user can select any node, i.e., axiom, in the Proof Component by
clicking on it and choosing the button displaying a magic wand (cf. Figure 2) to generate
all subset-minimal diagnoses for the selected axiom. This computes a list of diagnoses
which is then shown in the Ontology Component in the side menu. The second tech-
nique is highlighting a justification of an axiom. By clicking the button displaying the
magnifying glass, the corresponding node and axiom in the Ontology Component can
be highlighted through color change. This is an especially important feature for repair-
ing ontologies as it helps users to see the axioms in the ontology that lead to the selected
one in the currently considered proof.



3 Prototype Implementation

Our prototype was implemented as a web application using Express6 and Node.js7 on
the server side. The Node Express server supports multiple clients, which can either dis-
play the Proof Component or the Ontology Component. Thereby, we allow the user to
distribute the views according to their preferences on different displays or even on dif-
ferent devices in the same network. We made this choice early on to ensure that we have
the possibility to extend the usage of our tool to multi-device environments (MDEs). On
the client side, we use D3.js8 for the visualizations and the CSS framework Milligram9.
Furthermore, the tool supports GraphML files to load the data and to load and store
the layouts. Diagnoses and highlighting is calculated in separate Java applications. To
enable the clients to properly communicate among themselves and with the server, we
use Socket.IO10.

4 Adaptations and Expert Interview

In this section, we elaborate on the insights we gained from implementing the prototype
and from an interview with domain experts.

4.1 Adaptions for Natural Interaction on Interactive Surfaces

From the beginning of the design, we had the idea of extending our application to also
work with natural interaction, such as pen and touch input. Touch devices have become
ubiquitous and are frequently used for analysis tasks [19, 11]. Therefore, we made
specific design choices to ensure that the tool is extendable in the future, such as having
a client-server architecture that allows for a multi-device setup. Regarding our interface,
we created interactive mockups using Adobe XD for a future design iteration of two
main parts: (1) the design of the nodes and (2) the navigation of the proof.

As mentioned in the previous sections, we want to provide the user with a variable
top-down and bottom-up approach. To improve our current design, we were inspired by
natural and fluid interaction [8] for visualizations. In the fully collapsed state of a proof
(cf. Figure 6), only the leaf and the root node are visible. All other nodes are hidden
behind a Magic Rule. By pulling a node away from the Magic Rule, the next step that
was hidden behind the Magic Rule is revealed. Pushing a node back towards the Magic
Rule hides the last step of the proof. This approach can be used until there is no Magic
Rule left as well as to create several Magic Rules within one, possibly large, proof.

As shown in Figure 7, the new node design is less minimal than the old one and
includes all functionality within the node instead of using the space around the node. It
has two states: the collapsed, i.e., default, and the expanded state. The collapsed state
only provides the most important features, i.e., expanding and collapsing the child or

6 http://expressjs.com/
7 https://nodejs.org/en/
8 https://d3js.org/
9 https://milligram.io/

10 https://socket.io/

http://expressjs.com/
https://nodejs.org/en/
https://d3js.org/
https://milligram.io/
https://socket.io/


Fig. 6. Left: A proof with only leaf and root nodes being visible, Right: After pulling on axiom
a1 to reveal another step of the proof.

Fig. 7. Left: A node of an axiom in its collapsed state, Right: The node in its expanded state
showing additional functionalities

parent node. The expanded state, however, allows access to all features and additionally
explains features that are otherwise only accessible through an icon, e.g., expanding
and collapsing.

Even though the designs are not yet implemented in the prototype, we aim to provide
the users with a more natural and thus intuitive interaction for working with a proof and
an ontology by improving the overall node design and the navigation techniques.

4.2 Expert Interview

As part of our iterative design process, we conducted an interview with three domain
experts working daily with Description Logics ontologies. These were not the same
experts that took part in our initial analysis sessions (cf. subsection 2.1). We showed
them our prototype and explained how we imagined the workflow with the application.
Additionally, after receiving their feedback on the current prototype, we also presented
the design adaptations (cf. subsection 4.1). The comments were mostly about the theo-
retical background of the modular structure we use for the Ontology Component since



it is a rather uncommon way of representing an ontology. This structure was not imme-
diately clear to the users and could only be fully understood after an explanation and
discussion with one of the authors. This, however, is conflicting with our goal of being
easy to use for domain experts. Therefore, we consider switching to a more traditional
concept-based approach for the Ontology Component. The experts mentioned a lot of
minor design and implementation related issues, like improving icons or increasing the
font size. Most of the minor comments are already addressed by our design revisions.
Especially, our new version of navigating the proof and the introduction of the Magic
Rule received very favorable comments. In general, the experts were convinced by the
concept itself but expressed concerns about the modular structure of the ontology and
whether it would be reasonably easy to understand and thereby helpful.

5 Conclusion

We presented an interface that visualizes proofs and the corresponding ontology as side-
by-side node-link diagrams to facilitate ontology debugging of unwanted entailments.
We provided an overview of our visualization and interaction design including the Proof
Component and the Ontology Component and some technical details. Furthermore, we
elaborated on further adaptations for natural interaction and interactive surfaces and the
feedback we gained from an expert interview. In the future, we aim to incorporate our
adaptions into our prototype and conduct a larger user study to further investigate the
potential and utility of interactive visualizations for ontology engineering.

References

[1] Franz Baader et al., eds. The Description Logic Handbook: Theory, Implemen-
tation and Applications. 2nd ed. Cambridge University Press, 2007. DOI: 10.
1017/CBO9780511711787.

[2] Richard A. Becker and William S. Cleveland. “Brushing Scatterplots”. In: Tech-
nometrics 29.2 (May 1987), pp. 127–142. ISSN: 0040-1706. DOI: 10.1080/
00401706.1987.10488204.

[3] W. Chen et al. “Structure-Based Suggestive Exploration: A New Approach for
Effective Exploration of Large Networks”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 25.1 (Jan. 2019), pp. 555–565. ISSN: 1077-2626.
DOI: 10.1109/TVCG.2018.2865139.

[4] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. “A Review of Over-
view+detail, Zooming, and Focus+context Interfaces”. In: ACM Comput. Surv.
41.1 (Jan. 2009). ISSN: 0360-0300. DOI: 10.1145/1456650.1456652.

[5] C. Collins and S. Carpendale. “VisLink: Revealing Relationships Amongst Visu-
alizations”. In: IEEE Transactions on Visualization and Computer Graphics 13.6
(Nov. 2007), pp. 1192–1199. ISSN: 1077-2626. DOI: 10.1109/TVCG.2007.
70521.

[6] Marek Dudáš et al. “Ontology visualization methods and tools: a survey of the
state of the art”. In: The Knowledge Engineering Review 33 (2018). DOI: 10.
1017/S0269888918000073.

https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1080/00401706.1987.10488204
https://doi.org/10.1080/00401706.1987.10488204
https://doi.org/10.1109/TVCG.2018.2865139
https://doi.org/10.1145/1456650.1456652
https://doi.org/10.1109/TVCG.2007.70521
https://doi.org/10.1109/TVCG.2007.70521
https://doi.org/10.1017/S0269888918000073
https://doi.org/10.1017/S0269888918000073


[7] Philipp Eichmann et al. “Orchard: Exploring Multivariate Heterogeneous Net-
works on Mobile Phones”. In: Computer Graphics Forum (2020). ISSN: 1467-
8659. DOI: 10.1111/cgf.13967.

[8] Niklas Elmqvist et al. “Fluid interaction for information visualization”. en. In:
Information Visualization 10.4 (Oct. 2011), pp. 327–340. ISSN: 1473-8716. DOI:
10.1177/1473871611413180.

[9] Mathias Frisch, Jens Heydekorn, and Raimund Dachselt. “Investigating Multi-
touch and Pen Gestures for Diagram Editing on Interactive Surfaces”. In: Pro-
ceedings of the ACM International Conference on Interactive Tabletops and Sur-
faces. ITS ’09. New York, NY, USA: ACM, 2009, pp. 149–156. ISBN: 978-1-
60558-733-2. DOI: 10.1145/1731903.1731933.

[10] Michael Gleicher et al. “Visual comparison for information visualization”. In:
Information Visualization 10.4 (2011), pp. 289–309. DOI: 10.1177/147387
1611416549.

[11] P. Isenberg et al. “Data Visualization on Interactive Surfaces: A Research Agenda”.
In: IEEE Computer Graphics and Applications 33.2 (Mar. 2013), pp. 16–24.
ISSN: 0272-1716. DOI: 10.1109/MCG.2013.24.

[12] Aditya Kalyanpur et al. “Repairing Unsatisfiable Concepts in OWL Ontologies”.
In: The Semantic Web: Research and Applications, 3rd European Semantic Web
Conference, ESWC 2006, Budva, Montenegro, June 11-14, 2006, Proceedings.
Vol. 4011. Lecture Notes in Computer Science. Springer, 2006, pp. 170–184.
DOI: 10.1007/11762256\_15.

[13] Tomihisa Kamada and Satoru Kawai. “An algorithm for drawing general undi-
rected graphs”. In: Information Processing Letters 31.1 (1989), pp. 7–15. DOI:
https://doi.org/10.1016/0020-0190(89)90102-6.

[14] Nam Wook Kim et al. “DataToon: Drawing Dynamic Network Comics With
Pen + Touch Interaction”. In: Proceedings of the 2019 CHI Conference on Hu-
man Factors in Computing Systems. CHI ’19. event-place: Glasgow, Scotland
Uk. New York, NY, USA: ACM, 2019, 105:1–105:12. ISBN: 978-1-4503-5970-
2. DOI: 10.1145/3290605.3300335.

[15] Holger Knublauch et al. “The Protégé OWL Plugin: An Open Development
Environment for Semantic Web Applications”. In: The Semantic Web – ISWC
2004. Ed. by Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harme-
len. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 229–243. ISBN:
978-3-540-30475-3.

[16] R. Langner, T. Horak, and R. Dachselt. “VISTILES: Coordinating and Combin-
ing Co-located Mobile Devices for Visual Data Exploration”. In: IEEE Trans-
actions on Visualization and Computer Graphics PP.99 (2017), pp. 1–1. ISSN:
1077-2626. DOI: 10.1109/TVCG.2017.2744019.

[17] R. Langner, U. Kister, and R. Dachselt. “Multiple Coordinated Views at Large
Displays for Multiple Users: Empirical Findings on User Behavior, Movements,
and Distances”. In: IEEE Transactions on Visualization and Computer Graphics
25.1 (Jan. 2019), pp. 608–618. ISSN: 1077-2626. DOI: 10.1109/TVCG.2018
.2865235.

https://doi.org/10.1111/cgf.13967
https://doi.org/10.1177/1473871611413180
https://doi.org/10.1145/1731903.1731933
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1109/MCG.2013.24
https://doi.org/10.1007/11762256\_15
https://doi.org/https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1145/3290605.3300335
https://doi.org/10.1109/TVCG.2017.2744019
https://doi.org/10.1109/TVCG.2018.2865235
https://doi.org/10.1109/TVCG.2018.2865235


[18] Alexandra Lee, Daniel Archambault, and Miguel Nacenta. “Dynamic Network
Plaid: A Tool for the Analysis of Dynamic Networks”. In: Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. CHI ’19. event-
place: Glasgow, Scotland Uk. New York, NY, USA: ACM, 2019, 130:1–130:14.
ISBN: 978-1-4503-5970-2. DOI: 10.1145/3290605.3300360.

[19] Bongshin Lee et al. “Beyond Mouse and Keyboard: Expanding Design Consid-
erations for Information Visualization Interactions”. In: IEEE Transactions on
Visualization and Computer Graphics 18.12 (Dec. 2012), pp. 2689–2698. ISSN:
1077-2626. DOI: 10.1109/TVCG.2012.204.

[20] Bongshin Lee et al. “TreePlus: Interactive Exploration of Networks with En-
hanced Tree Layouts”. In: IEEE Transactions on Visualization and Computer
Graphics 12.6 (Nov. 2006), pp. 1414–1426. ISSN: 1077-2626. DOI: 10.1109/
TVCG.2006.106.

[21] A. Lex et al. “Caleydo: Design and evaluation of a visual analysis framework
for gene expression data in its biological context”. In: 2010 IEEE Pacific Vi-
sualization Symposium (PacificVis). Mar. 2010, pp. 57–64. DOI: 10.1109/
PACIFICVIS.2010.5429609.

[22] T. Major and R. C. Basole. “Graphicle: Exploring Units, Networks, and Context
in a Blended Visualization Approach”. In: IEEE Transactions on Visualization
and Computer Graphics 25.1 (Jan. 2019), pp. 576–585. ISSN: 1077-2626. DOI:
10.1109/TVCG.2018.2865151.

[23] Nicolas Matentzoglu et al. “Inference Inspector: Improving the verification of
ontology authoring actions”. In: Journal of Web Semantics 49 (2018), pp. 1–15.
ISSN: 1570-8268. DOI: https://doi.org/10.1016/j.websem.2017.
09.004.

[24] Enrico Motta et al. “A Novel Approach to Visualizing and Navigating Ontolo-
gies”. In: The Semantic Web – ISWC 2011. Ed. by Lora Aroyo et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 470–486. ISBN: 978-3-642-
25073-6.

[25] Tamara Munzner. Visualization Analysis and Design. A K Peters Visualization
Series. CRC Press, Dec. 2014. ISBN: 9781466508910.

[26] C. Nobre et al. “Lineage: Visualizing Multivariate Clinical Data in Genealogy
Graphs”. In: IEEE Transactions on Visualization and Computer Graphics 25.3
(Mar. 2019), pp. 1543–1558. ISSN: 1077-2626. DOI: 10.1109/TVCG.2018.
2811488.

[27] J. C. Roberts. “State of the Art: Coordinated Multiple Views in Exploratory
Visualization”. In: Fifth International Conference on Coordinated and Multi-
ple Views in Exploratory Visualization (CMV 2007). July 2007, pp. 61–71. DOI:
10.1109/CMV.2007.20.

[28] Ramik Sadana and John Stasko. “Designing Multiple Coordinated Visualizations
for Tablets”. en. In: Computer Graphics Forum 35.3 (June 2016), pp. 261–270.
ISSN: 1467-8659. DOI: 10.1111/cgf.12902.

[29] H. Schulz. “Treevis.net: A Tree Visualization Reference”. In: IEEE Computer
Graphics and Applications 31.6 (Nov. 2011), pp. 11–15. ISSN: 1558-1756. DOI:
10.1109/MCG.2011.103.

https://doi.org/10.1145/3290605.3300360
https://doi.org/10.1109/TVCG.2012.204
https://doi.org/10.1109/TVCG.2006.106
https://doi.org/10.1109/TVCG.2006.106
https://doi.org/10.1109/PACIFICVIS.2010.5429609
https://doi.org/10.1109/PACIFICVIS.2010.5429609
https://doi.org/10.1109/TVCG.2018.2865151
https://doi.org/https://doi.org/10.1016/j.websem.2017.09.004
https://doi.org/https://doi.org/10.1016/j.websem.2017.09.004
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/TVCG.2018.2811488
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1111/cgf.12902
https://doi.org/10.1109/MCG.2011.103


[30] H. Schulz, S. Hadlak, and H. Schumann. “The Design Space of Implicit Hi-
erarchy Visualization: A Survey”. In: IEEE Transactions on Visualization and
Computer Graphics 17.4 (Apr. 2011), pp. 393–411. ISSN: 1941-0506. DOI: 10.
1109/TVCG.2010.79.

[31] Margaret-Anne Storey et al. “Jambalaya: Interactive visualization to enhance on-
tology authoring and knowledge acquisition in Protégé”. In: Workshop on Inter-
active Tools for Knowledge Capture (K-CAP-2001). 2001.

[32] Matthew Tobiasz, Petra Isenberg, and Sheelagh Carpendale. “Lark: Coordinat-
ing Co-located Collaboration with Information Visualization”. In: IEEE Trans-
actions on Visualization and Computer Graphics 15.6 (Nov. 2009), pp. 1065–
1072. ISSN: 1077-2626. DOI: 10.1109/TVCG.2009.162.

https://doi.org/10.1109/TVCG.2010.79
https://doi.org/10.1109/TVCG.2010.79
https://doi.org/10.1109/TVCG.2009.162

	Towards Designing a Tool For Understanding Proofs in Ontologies through Combined Node-Link Diagrams 

