WISP: Weighted Shortest Paths for RDF graphs

Gonzalo Tartari, Aidan Hogan DCC, Universidad de Chile

> Fundamentos de los datos

"INTERESTING" PATHS = SHORTEST PATHS?

"INTERESTING" PATHS **=** SHORTEST PATHS!

(MANY OF THE) EXISTING APPROACHES

(MANY OF THE) EXISTING APPROACHES

n! simple paths (but only a few of interest)

(MANY OF THE) EXISTING APPROACHES

- n! simple paths (but only a few of interest)
 - Paths thus often bounded in length

Our Approach: Weight Graphs

Idea: "Common" nodes/edges get weighted higher

• *Benefit:* Can find "interesting" paths directly

WEIGHTING GRAPHS: NODES

Node Weights: Length (Baseline)

path					score
:country	:U.S.	:country ⁻			1
:instance	:film	$: \texttt{instance}^-$			1
:director	:RScott	:sibling	:TScott	$:$ director $^-$	2
:director	:RScott	$:sibling^-$:TScott	$: director^-$	2

Node Weights: Degree

path					score
:director	:RScott	:sibling	:TScott	$:$ director $^-$	51
:director	:RScott	$:sibling^-$:TScott	$:$ director $^-$	51
:instance	:film	$:instance^{-}$			582139
:country	:U.S.	:country ⁻			19328427

Node Weights: PageRank

path					score
:director	:RScott	:sibling	:TScott	$:$ director $^-$	0.0003
:director	:RScott	$:sibling^{-}$:TScott	$:$ director $^-$	0.0003
:instance	:film	:instance ⁻			0.008
:country	:U.S.	:country ⁻			0.04

ASIDE: PAGERANK / DIRECTED GRAPH USED

WEIGHTING GRAPHS: EDGES

WEIGHTING WITH ONLY NODES

path			score
:country	:U.S.	$: \texttt{country}^-$	0.04
:country	:U.S.	:head ⁻	0.04
:head	:U.S.	$: \texttt{country}^-$	0.04
:head	:U.S.	:head ⁻	0.04

WEIGHTING WITH ONLY NODES

path			score
:country	:U.S.	:country ⁻	0.04
:country	:U.S.	:head ⁻	0.04
:head	:U.S.	$: \texttt{country}^-$	0.04
:head	:U.S.	:head ⁻	0.04

Edge Weights: Frequency

path			score
:head	:U.S.	:head ⁻	16426
:country	:U.S.	:head ⁻	19597733
:head	:U.S.	$: \texttt{country}^-$	19597733
:country	:U.S.	$: \texttt{country}^-$	39179040

WEIGHTING GRAPHS: NODES + EDGES

Node + Edge Weights: Degree + Frequency

path					score
:director	:RScott	:sibling	:TScott	:director	9409322
:country	:RSCOTT :U.S.	:sibling :country ⁻	:IScott	:director	9409322 21074247
:instance	:film	:instance			100929984

Node + Edge Weights: PageRank + Frequency

path					score
:country :director :director :instance	:U.S. :RScott :RScott :film	:country ⁻ :sibling :sibling ⁻ :instance ⁻	:TScott :TScott	:director ⁻ :director ⁻	$\begin{array}{c} 1745820.04\\9409271.0003\\9409271.0003\\100347846.008\end{array}$

Node + Edge Weights: PageRank + Frequency

path					score
:country :director :director :instance	:U.S. :RScott :RScott :film	:country ⁻ :sibling :sibling ⁻ :instance ⁻	:TScott :TScott	:director ⁻ :director ⁻	$\begin{array}{r} 1745820.04\\9409271.0003\\9409271.0003\\100347846.008\end{array}$

NODE + EDGE WEIGHTS: [0,1] NORMALISATION

path					score
:director :director :country :instance	:RScott :RScott :U.S. :film	:sibling :sibling ⁻ :country ⁻ :instance ⁻	:TScott :TScott	:director ⁻ :director ⁻	$\begin{array}{c} 0.195033\\ 0.195033\\ 1.02153\\ 2.2\end{array}$

Hybrid Node Weights

Node Weights: PageRank

Visiting one high-centrality node = Visiting thousands of low-centrality nodes

path					score
:director	:RScott	:sibling	:TScott	$:$ director $^-$	0.0075
:director	:RScott	$:sibling^{-}$:TScott	$: director^-$	0.0075
:instance	:film	$: \texttt{instance}^-$			0.02
:country	:U.S.	:country ⁻			1

Hybrid Node Weights: PageRank + Length

path					score
:instance :country :director :director	:film :U.S. :RScott :RScott	:instance ⁻ :country ⁻ :sibling :sibling ⁻	:TScott :TScott	:director ⁻	$ \begin{array}{r} 1.2 \\ 2 \\ 2.0075 \\ 2.0075 \end{array} $

IMPLEMENTATION

Weighted Shortest-Path Implementation

- Dijsktra's algorithm:
 - Worst case: $O(|E| + |V| \cdot \log|V|)$

Image source: https://github.com/aakash1104/Graph-Algorithms

Experiments

- Performance:
 - How are the runtimes?
 - How is the scalability?
- Weighting schemes:
 - How similar are paths for different weightings?
 - Does weighting help find interesting paths?
 - Which weighting finds the most interesting paths?

Dataset: Wikidata

- Truthy dump: 2017-06-07
 - 25 million nodes (**Q**-IRIs only)
 - 90 million edges

DATASET: WIKIDATA SLICES

Dataset	1.6 M	3.2 M	6.4 м	12.8 м	FULL
Nodes	1,227,382	2,507,582	5,303,322	10,343,129	25,081,334
Edges	6,603,412	12,160,436	22,008,446	36,404,534	89,878,092

Machine

- 2 x Intel Xeon Quad Core @1.9GHz
- 32 GB of RAM

Weighting Schemes

- Node
 - Degree
 - PageRank
 - Length
- Node + Edge
 - Degree + Edge Frequency
 - PageRank + Edge Frequency
- Hybrid Node + Edge
 - Degree + Length + Edge Frequency
 - PageRank + Length + Edge Frequency

(DE)

(PE)

Performance

Queries (Node pairs)

- Queries: 100 node pairs randomly sampled
 - From smallest slice (Q code < 100000)
 - From each slice independently
- Task: Return one (best) path

Performance Results (Full Dataset)

Performance Results (**DEL** | Various Scales)

COMPARISON OF WEIGHTING SCHEMES

COMPARISON OF PATH LENGTH (FULL DATASET)

HOW MANY PAIRS GIVE THE SAME PATH? (FULL DATASET)

PEL -	- 32%	7%	59%	83%	5%	54%	100% -
PL -	- 36%	10%	71%	46%	9%	100%	54% -
P -	- 4%	13%	7%	5%	100%	9%	5% -
DEL -	- 32%	7%	56%	100%	5%	46%	83% -
DL -	- 37%	14%	100%	56%	7%	71%	59%
D -	- 5%	100%	14%	7%	13%	10%	7% -
L -	- 100%	5%	37%	32%	4%	36%	32% -
	L	D	DL	DEL	\mathbf{P}	$_{\rm PL}$	PEL

User Study

QUERIES: SAME TYPE

Node	Q code	Node	Q code
George W. Bush	Q207	Barack Obama	Q76
Bolivia	Q750	Portugal	Q45
Elvis Presley	Q303	Deep Purple	Q101505
Lionel Messi	Q615	Stephen Curry	Q352159
Eiffel Tower	Q243	Pisa Tower	Q39054
Alan Turing	Q7251	Leonhard Euler	Q7604
Samsung	Q20716	Apple Inc.	Q312
Ford Motor Company	Q44294	Volkswagen	Q246
Al Pacino	Q41163	Bill Murray	Q29250
CNN	Q48340	BBC	Q9531

Queries: Different types

Node	Q code	Node	Q code
Donald Trump	Q22686	Pablo Neruda	Q34189
Steam (videogame platform)	Q337535	Barcelona Football Club	Q7156
Everest (mountain)	Q513	FIFA	Q253414
Lord of the Rings	Q15228	Apollo 11 (space mission)	Q43653
RMS Titanic	Q25173	Saturn	Q193
Netflix	Q907311	Napoleon Bonaparte	Q517
Second World War	Q362	Plato	Q859
The Beatles	Q1299	Star Wars	Q462
Odyssey	Q35160	Facebook (web site)	Q355
X Rays	Q34777	Amazon.com	Q3884

User study

- 10 students
- 1.6 M dataset
- Shown all paths for one query together
- Scores: 1 (very poor) 7 (very good)
- 79 complete evaluations
 - 4 evaluations per query (node pair)
 - **-** 553 scores

LOWEST-RATED PATH

mean score 1.25 ({1,1,1,2})

HIGHEST-RATED PATH

mean score 6.0 ({5,7})

INTER-RATER AGREEMENT

• Kendall's τ correlation (ordinal scales)

 $-\tau = 0.201$

- Slight, positive agreement
- Two sets of results
 - -A||
 - **τ** = 0.201, 20 queries, 79 evaluations
 - Concordant
 - Queries with positive $\boldsymbol{\tau}$ correlation only
 - τ = 0.552, 8 queries, 27 evaluations

USER STUDY: COMPARISON OF WEIGHTINGS

http://wisp.dcc.uchile.cl

CONCLUSIONS

Conclusions

- Performance:
 - How are the runtimes?
 - A few seconds (1.6 m) to a few minutes (full dataset)
 - How is the scalability?
 - Linear (roughly)
- Weighting schemes:
 - How similar are paths for different weightings?
 - DEL | PEL similar; others not so much
 - Does weighting help find interesting paths?
 - Yes!
 - Which weighting finds the most interesting paths?
 - No clear winner (PL best in most cases)

FUTURE WORK

- Top-*k* queries
- Explore more weightings
- Normalisation / combinations
- Performance? (Parallelism? Approximation?)
- iiiEvaluation!!!